Back to Search Start Over

Nanometer-scale photon confinement inside dielectrics

Authors :
Søren Engelberth Hansen
Jesper Moerk
Rasmus E. Christiansen
Søren Stobbe
Babak Vosoughi Lahijani
Marcus Albrechtsen
Nicolas Stenger
Laura Casses
Vy Thi Hoang Nguyen
Henri Jansen
Ole Sigmund
Publication Year :
2021
Publisher :
Research Square Platform LLC, 2021.

Abstract

Optical nanocavities confine and store light, which is essential to increase the interaction between photons and electrons in semiconductor devices, enabling, e.g., lasers and emerging quantum technologies. While temporal confinement has improved by orders of magnitude over the past decades, spatial confinement inside dielectrics was until recently believed to be bounded at the diffraction limit. The conception of dielectric bowtie cavities (DBCs) shows a path to photon confinement inside semiconductors with mode volumes bound only by the constraints of materials and nanofabrication, but theory was so far misguided by inconsistent definitions of the mode volume and experimental progress has been impeded by steep nanofabrication requirements. Here we demonstrate nanometer-scale photon confinement inside 8 nm silicon DBCs with an aspect ratio of 30, inversely designed by fabrication-constrained topology optimization. Our cavities are defined within a compact device footprint of 4 lambda^2 and exhibit mode volumes down to V = 3E-4 lambda^3 with wavelengths in the lambda = 1550 nm telecom band. This corresponds to field localization deep below the diffraction limit in a single hotspot inside the dielectric. A crucial insight underpinning our work is the identification of the critical role of lightning-rod effects at the surface. They invalidate the common definition of the mode volume, which is prone to gauge meretricious surface effects or numerical artefacts rather than robust confinement inside the dielectric. We use near-field optical measurements to corroborate the photon confinement to a single nanometer-scale hotspot. Our work enables new CMOS-compatible device concepts ranging from few- and single-photon nonlinearities over electronics-photonics integration to biosensing.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........76742366324375467839aaecf7bbea9e
Full Text :
https://doi.org/10.21203/rs.3.rs-738060/v1