Back to Search
Start Over
Model test investigation of a spar floating wind turbine
- Source :
- Marine Structures. 49:76-96
- Publication Year :
- 2016
- Publisher :
- Elsevier BV, 2016.
-
Abstract
- Several floating wind turbine designs whose hull designs reflect those used in offshore petroleum industry have emerged as leading candidates for the future development of offshore wind farms. This article presents the research findings from a model basin test program that investigated the dynamic response of a 1:50 scale model OC3 spar floating wind turbine concept designed for a water depth of 200 m. In this study the rotor was allowed to rotate freely with the wind speed and this approach eliminated some of the undesirable effects of controlling wind turbine rotational speed that were observed in earlier studies. The quality of the wind field developed by an array of fans was investigated as to its uniformity and turbulence intensity. Additional calibration tests were performed to characterize various components that included establishing the baseline wind turbine tower frequencies, stiffness of the delta type mooring system and free decay response behaviour. The assembled system was then studied under a sequence of wind and irregular wave scenarios to reveal the nature of the coupled response behaviour. The wind loads were found to have an obvious influence on the surge, heave and pitch behaviour of the spar wind turbine system. It was observed from the experimental measurements that bending moment at the top of the support tower is dominated by the 1P oscillation component and somewhat influenced by the incoming wave. Further it was determined that the axial rotor thrust and tower-top shear force have similar dynamic characteristics both dominated by tower’s first mode of vibration under wind-only condition while dominated by the incident wave field when experiencing wind-wave loading. The tensions measured in the mooring lines resulting from either wave or wind-wave excitations were influenced by the surge/pitch and heave couplings and the wind loads were found to have a clear influence on the dynamic responses of the mooring system.
- Subjects :
- Engineering
Wind gradient
020209 energy
020101 civil engineering
Ocean Engineering
Floating wind turbine
02 engineering and technology
Turbine
Wind speed
0201 civil engineering
law.invention
Wind profile power law
law
0202 electrical engineering, electronic engineering, information engineering
General Materials Science
Spar
Physics::Atmospheric and Oceanic Physics
Rotor (electric)
business.industry
Mechanical Engineering
Structural engineering
Offshore wind power
Mechanics of Materials
Physics::Space Physics
business
Marine engineering
Subjects
Details
- ISSN :
- 09518339
- Volume :
- 49
- Database :
- OpenAIRE
- Journal :
- Marine Structures
- Accession number :
- edsair.doi...........76bbb07c31d05d75a3308c833bd61491