Back to Search Start Over

A new CdII coordination polymer with a self-penetrating architecture induced by the molecular conformation of a rigid bithiophene ligand

Authors :
Zhi-Qiang Shi
Ning-Ning Ji
Hai Liang Hu
Source :
Acta Crystallographica Section C Structural Chemistry. 74:218-223
Publication Year :
2018
Publisher :
International Union of Crystallography (IUCr), 2018.

Abstract

The design and synthesis of coordination polymers with a self-penetrating architecture has attracted much interest not only due to their interesting structures but also due to their potential applications. 5,5′-Bis(pyridin-4-yl)-2,2′-bithiophene (bpbp), as a conjugated bithiophene ligand, can exhibit trans and cis conformations and this can lead to the construction of a self-penetrating architecture. In addition, the semi-rigid ancillary ligand 4,4′-oxybis(benzoic acid) (H2oba) can adopt different coordination modes, resulting in coordination polymers with high-dimensional skeletons. A new CdII coordination polymer based on mixed ligands, namely poly[diaquapentakis[μ-5,5′-bis(pyridin-4-yl)-2,2′-bithiophene-κ2 N:N′]bis(nitrato-κ2 O,O′)tetrakis(μ3-4,4′-oxydibenzoato)-κ10 O:O,O′:O′′,O′′′;κ6 O:O′:O′′-pentacadmium(II)], [Cd5(C14H14O5)4(NO3)2(C18H12N2S2)5(H2O)2] n , (I), has been synthesized under solvothermal conditions and characterized by single-crystal X-ray diffraction, IR spectroscopy and elemental analysis. Single-crystal X-ray diffraction indicates that there are three crystallographically independent CdII cations, three bpbp ligands, two deprotonated oba2− ligands, one nitrate ligand and one coordinated water molecule in the asymmetric unit. One CdII centre is seven-coordinated, exhibiting a distorted {CdN2O5} pentagonal bipyramidal geometry, while the other two Cd centres are both six-coordinated, showing slightly distorted {CdN2O4} octahedral geometries. The most interesting feature is the co-existence of trans and cis conformations in a single net, allowing structural interpenetration via self-threading and yet the expected self-penetrating structure was obtained. Topological analysis shows that the whole three-dimensional framework can be classified as a 3-nodal (4,6,6)-c net with Schläfli symbol {613.82}2{66}, which is a new topology. Furthermore, the luminescence properties of (I) were examined in the solid state at room temperature.

Details

ISSN :
20532296
Volume :
74
Database :
OpenAIRE
Journal :
Acta Crystallographica Section C Structural Chemistry
Accession number :
edsair.doi...........76d1b094073ffb024da692660f393e8d