Back to Search Start Over

Intuitionistic fuzzy-valued neutrosophic multi-sets and numerical applications to classification

Authors :
Mehmet Ünver
Ezgi Türkarslan
Nuri elik
Murat Olgun
Jun Ye
Source :
Complex & Intelligent Systems. 8:1703-1721
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

A single-valued neutrosophic multi-set is characterized by a sequence of truth membership degrees, a sequence of indeterminacy membership degrees and a sequence of falsity membership degrees. Nature of a single-valued neutrosophic multi-set allows us to consider multiple information in the truth, indeterminacy and falsity memberships which is pretty useful in multi-criteria group decision making. In this paper, we consider sequences of intuitionistic fuzzy values instead of numbers to define the concept of intuitionistic fuzzy-valued neutrosophic multi-set. In this manner, such a set gives more powerful information. We also present some set theoretic operations and a partial order for intuitionistic fuzzy-valued neutrosophic sets and provide some algebraic operations between intuitionistic fuzzy-valued neutrosophic values. Then, we develop two types of weighted aggregation operators with the help of intuitionistic fuzzy t-norms and t-conorms. By considering some well-known additive generators of ordinary t-norms, we give the Algebraic weighted arithmetic and geometric aggregation operators and the Einstein weighted arithmetic and geometric aggregation operators that are the particular cases of the weighted aggregation operators defined via general t-norms and t-conorms. We also define a simplified neutrosophic valued similarity measure and we use a score function for simplified neutrosophic values to rank similarities of intuitionistic fuzzy-valued neutrosophic multi-values. Finally, we give an algorithm to solve classification problems using intuitionistic fuzzy-valued neutrosophic multi-values and proposed aggregation operators and we apply the theoretical part of the paper to a real classification problem.

Subjects

Subjects :
General Medicine

Details

ISSN :
21986053 and 21994536
Volume :
8
Database :
OpenAIRE
Journal :
Complex & Intelligent Systems
Accession number :
edsair.doi...........76d4f2a794d38724a03577965d27306c
Full Text :
https://doi.org/10.1007/s40747-021-00621-5