Back to Search
Start Over
Nonlinear Model Predictive Control for the Energy Management of Fuel Cell Hybrid Electric Vehicles in Real Time
- Source :
- IEEE Transactions on Industrial Electronics. 68:3213-3223
- Publication Year :
- 2021
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2021.
-
Abstract
- This article proposes an energy management system (EMS) for a fuel cell (FC) hybrid electric vehicle. The EMS is based on nonlinear model predictive control (NMPC) and employs a recurrent neural network (RNN) for modeling a proton exchange membrane FC. The NMPC makes possible the formulation of control objectives not allowed by a linear model predictive control (MPC), such as maximum efficiency point tracking of the FC, while the RNN can accurately predict the FC nonlinear dynamics. The EMS was implemented on a low-cost development board, and the experiments were performed in real time on a hardware-in-the-loop test bench equipped with a real 3-kW FC stack. The experimental results demonstrate that the NMPC EMS is able to meet the vehicle's energy demand, as well as to operate the FC in its most efficient region. Moreover, a comparative study is performed between the proposed NMPC, a linear MPC, and hysteresis band control. The results of this comparative study demonstrate that the NMPC provides a better fuel economy and can reduce FC degradation.
- Subjects :
- business.product_category
Computer science
Energy management
020208 electrical & electronic engineering
Proton exchange membrane fuel cell
02 engineering and technology
Energy management system
Nonlinear system
Model predictive control
Recurrent neural network
Control and Systems Engineering
Control theory
Electric vehicle
0202 electrical engineering, electronic engineering, information engineering
Fuel cells
Electrical and Electronic Engineering
business
Subjects
Details
- ISSN :
- 15579948 and 02780046
- Volume :
- 68
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Industrial Electronics
- Accession number :
- edsair.doi...........778e9bb854b7365415ab621ad600bd24