Back to Search Start Over

Saliency‐based dark channel prior model for single image haze removal

Authors :
Libao Zhang
Shiyi Wang
Xiaohan Wang
Source :
IET Image Processing. 12:1049-1055
Publication Year :
2018
Publisher :
Institution of Engineering and Technology (IET), 2018.

Abstract

Images degraded by haze usually have low contrast and fide colours, and thus have bad effects on applications such as object tracking, face recognition, and intelligent surveillance. So the purpose of dehazing is to recover the image contrast without colour distortion. The dark channel prior (DCP) is widely used in the field of haze removal because of its simplicity and effectiveness. However, when faced with bright white objects, DCP overestimates the haze from its true value and thus causes colour distortion. In this study, the authors propose a dehazing model combining saliency detection with DCP to obtain recovered images with little colour distortion. There are three main contributions. First, they introduce a novel saliency detection method, focusing on superpixel intensity contrast, to extract bright white objects in the hazy image. Those objects are not used to estimate the atmospheric light and transmission in the dark channel image. Second, a self-adaptive upper bound is set for the scene radiance to prevent some regions being too bright. Third, they propose a quantitative indicator, colour variance distance, to evaluate the colour restoration. Experimental results show that their proposed model generates less colour distortion and has better comprehensive performance than competing models.

Details

ISSN :
17519667
Volume :
12
Database :
OpenAIRE
Journal :
IET Image Processing
Accession number :
edsair.doi...........79b2a3dd1172af170c429f94fa2caf37