Back to Search Start Over

On quasigroups satisfying Stein's third law

Authors :
Terry S. Griggs
Andrew R. Kozlik
Source :
Discrete Mathematics. 344:112526
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

A quasigroup ( Q , ⋅ ) of order v satisfies Stein's third law if ( y ⋅ x ) ⋅ ( x ⋅ y ) = x holds for all x, y ∈ Q . Let the quasigroup contain n idempotent elements. We construct such quasigroups with ( v , n ) ∈ { ( 20 , 0 ) , ( 24 , 0 ) , ( 28 , 0 ) , ( 36 , 0 ) } , thus completing the existence spectrum of quasigroups satisfying Stein's third law with no idempotents. We also construct previously unknown quasigroups with ( v , n ) ∈ { ( 17 , 11 ) , ( 21 , 3 ) , ( 21 , 7 ) , ( 24 , 4 ) , ( 25 , 7 ) , ( 25 , 19 ) } and provide an enumeration for all v ≤ 9 .

Details

ISSN :
0012365X
Volume :
344
Database :
OpenAIRE
Journal :
Discrete Mathematics
Accession number :
edsair.doi...........79f80db90d4eaa8b612b327ea3b6e847
Full Text :
https://doi.org/10.1016/j.disc.2021.112526