Back to Search
Start Over
Synthesis and Properties of Lead Zirconate Titanate Thin Films Via Metalorganic Chemical Vapor Deposition
- Source :
- Journal of Materials Research. 17:1536-1542
- Publication Year :
- 2002
- Publisher :
- Springer Science and Business Media LLC, 2002.
-
Abstract
- Ferroelectric PZT thin films were deposited on Pt and SrRuO3 substrates in a cold-wall reactor, using the Pb(C2H5)4/Zr(OBu)4/Ti(OPri)4/O2 reaction system. In comparison with Pt substrate, the growth rate of lead zirconate titanate (PZT) thin film was higher on SrRuO3. Lead content of the thin film deposited on either substrate at low temperatures (723–863 K) was much more temperature dependent than the other two metal contents. The strong temperature dependence originated from the high activation energy in the initial decomposition of Pb(C2H5)4 vapor, which was 54 kcal/mol. The surface reaction constant of lead precursor had much lower temperature dependence. The activation energy of surface reaction for PbO, estimated from deposition in a mini-chamber, was 6 kcal/mol on Pt and 9 kcal/mol on the SrRuO3 substrate. Therefore, the incorporation path of component oxide PbO, whose apparent activation energy was 31 kcal/mol on Pt and 29 kcal/mol on SrRuO3, essentially involved considerable gas-phase reaction. The PZT (50/50) thin film on SrRuO3 bottom electrode possessed a lower coercive field and a smaller remnant polarization than that on Pt. The PZT capacitor on SrRuO3 was also less vulnerable to polarization fatigue.
- Subjects :
- Materials science
Mechanical Engineering
Analytical chemistry
Oxide
Nanotechnology
Chemical vapor deposition
Substrate (electronics)
Activation energy
Condensed Matter Physics
Lead zirconate titanate
Ferroelectricity
chemistry.chemical_compound
chemistry
Mechanics of Materials
General Materials Science
Thin film
Polarization (electrochemistry)
Subjects
Details
- ISSN :
- 20445326 and 08842914
- Volume :
- 17
- Database :
- OpenAIRE
- Journal :
- Journal of Materials Research
- Accession number :
- edsair.doi...........7a3bc0111de3d48737972823b6d3082d