Back to Search Start Over

Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks

Authors :
Dominik Gront
Kresten Lindorff-Larsen
Jack Maguire
Jens Meiler
Christopher D. Bahl
Jason S. Fell
Chris Bailey-Kellogg
Andrew M. Watkins
Frank DiMaio
Daniel P. Farrell
Jared Adolf-Bryfogle
Julia Koehler Leman
Frank D. Teets
Vladimir Yarov-Yarovoy
Ajasja Ljubetič
Shannon T. Smith
William A. Hansen
Steven M. Lewis
Justyna Krys
Shourya S. Roy Burman
Amelie Stein
Rhiju Das
David Baker
Vikram Khipple Mulligan
Jason W. Labonte
Georg Kuenze
William R. Schief
Rebecca F. Alford
Shane Ó Conchúir
Hope Woods
Tanja Kortemme
Johanna K. S. Tiemann
Sagar D. Khare
Sergey Lyskov
Ziv Ben-Aharon
Ora Schueler-Furman
Amanda L. Loshbaugh
Richard Bonneau
Brahm J. Yachnin
Andrew Leaver-Fay
Kyle A. Barlow
Phuong T. Nguyen
Jeliazko R. Jeliazkov
Jeffrey J. Gray
Justin B. Siegel
Rocco Moretti
Ameya Harmalkar
Brian Kuhlman
Publication Year :
2021
Publisher :
Cold Spring Harbor Laboratory, 2021.

Abstract

Each year vast international resources are wasted on irreproducible research. The scientific community has been slow to adopt standard software engineering practices, despite the increases in high-dimensional data, complexities of workflows, and computational environments. Here we show how scientific software applications can be created in a reproducible manner when simple design goals for reproducibility are met. We describe the implementation of a test server framework and 40 scientific benchmarks, covering numerous applications in Rosetta bio-macromolecular modeling. High performance computing cluster integration allows these benchmarks to run continuously and automatically. Detailed protocol captures are useful for developers and users of Rosetta and other macromolecular modeling tools. The framework and design concepts presented here are valuable for developers and users of any type of scientific software and for the scientific community to create reproducible methods. Specific examples highlight the utility of this framework and the comprehensive documentation illustrates the ease of adding new tests in a matter of hours.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........7ae3b538a88ca76a15e111345bd76765