Back to Search
Start Over
FAST AND FLEXIBLE UNCERTAINTY QUANTIFICATION THROUGH A DATA-DRIVEN SURROGATE MODEL
- Source :
- International Journal for Uncertainty Quantification. 8:175-192
- Publication Year :
- 2018
- Publisher :
- Begell House, 2018.
- Subjects :
- Statistics and Probability
Control and Optimization
Dynamical systems theory
Computer science
05 social sciences
Monte Carlo method
010501 environmental sciences
01 natural sciences
Data-driven
Surrogate model
Modeling and Simulation
0502 economics and business
Discrete Mathematics and Combinatorics
Uncertainty quantification
Algorithm
050203 business & management
0105 earth and related environmental sciences
Subjects
Details
- ISSN :
- 21525080
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- International Journal for Uncertainty Quantification
- Accession number :
- edsair.doi...........7e3f64b969748409e0d812e294c6a657
- Full Text :
- https://doi.org/10.1615/int.j.uncertaintyquantification.2018021975