Back to Search Start Over

Compensated Monte Carlo Collision Model for Particle-in-Cell Simulation in High-Pressure Plasmas

Authors :
Yongdong Li
Yan Zhou
Hongguang Wang
Meiqin Liu
Chunliang Liu
Source :
IEEE Transactions on Plasma Science. 38:2062-2068
Publication Year :
2010
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2010.

Abstract

The Monte Carlo collision (MCC) model is widely adopted to simulate discharge plasmas using the particle-in-cell (PIC) method; however, it has low efficiency in high-pressure plasmas because of the small time steps required due to the constraint of high collision frequency. To relax this time step constraint, a compensated Monte Carlo collision model (CMCC) is proposed which considers multiple collisions in a time step as a series of single collisions to compensate for the neglected collisions. The electron motion in a high-pressure He gas for various reduced electric fields E/N and the streamer formation process in a laser-triggered spark gap were simulated using the CMCC model. Simulation results showed that the CMCC model with long time step obtained reasonable electron velocity distribution, temperature, drift velocity, plasma density, and space-charge field. It was demonstrated that the CMCC model had high accuracy and high efficiency, particularly for PIC simulation in high-pressure plasmas.

Details

ISSN :
19399375 and 00933813
Volume :
38
Database :
OpenAIRE
Journal :
IEEE Transactions on Plasma Science
Accession number :
edsair.doi...........7f56ecf9a4771abd563cc284176e9bde
Full Text :
https://doi.org/10.1109/tps.2010.2050338