Back to Search
Start Over
Definable categories and $\mathbb T$-motives
- Source :
- Rendiconti del Seminario Matematico della Università di Padova. 139:205-224
- Publication Year :
- 2018
- Publisher :
- European Mathematical Society - EMS - Publishing House GmbH, 2018.
-
Abstract
- Making use of Freyd's free abelian category on a preadditive category we show that if $T:D\rightarrow \mathcal{A}$ is a representation of a quiver $D$ in an abelian category $\mathcal{A}$ then there is an abelian category $\mathcal{A} (T)$, a faithful exact functor $F_T: \mathcal{A} (T) \to \mathcal{A}$ and an induced representation $\tilde T: D \to \mathcal{A} (T)$ such that $F_T\tilde T= T$ universally. We then can show that $\mathbb{T}$-motives as well as Nori's motives are given by a certain category of functors on definable categories.
- Subjects :
- Model theory
Pure mathematics
Algebra and Number Theory
Functor
Preadditive category
Induced representation
010102 general mathematics
Quiver
Representation (systemics)
16. Peace & justice
01 natural sciences
Mathematics::Category Theory
0103 physical sciences
010307 mathematical physics
Geometry and Topology
Abelian category
0101 mathematics
Exact functor
Mathematical Physics
Analysis
Mathematics
Subjects
Details
- ISSN :
- 00418994
- Volume :
- 139
- Database :
- OpenAIRE
- Journal :
- Rendiconti del Seminario Matematico della Università di Padova
- Accession number :
- edsair.doi...........7f90aa8d14fa2604ee03fb44f9c5ac1d
- Full Text :
- https://doi.org/10.4171/rsmup/139-8