Back to Search Start Over

Definable categories and $\mathbb T$-motives

Authors :
Mike Prest
Luca Barbieri-Viale
Source :
Rendiconti del Seminario Matematico della Università di Padova. 139:205-224
Publication Year :
2018
Publisher :
European Mathematical Society - EMS - Publishing House GmbH, 2018.

Abstract

Making use of Freyd's free abelian category on a preadditive category we show that if $T:D\rightarrow \mathcal{A}$ is a representation of a quiver $D$ in an abelian category $\mathcal{A}$ then there is an abelian category $\mathcal{A} (T)$, a faithful exact functor $F_T: \mathcal{A} (T) \to \mathcal{A}$ and an induced representation $\tilde T: D \to \mathcal{A} (T)$ such that $F_T\tilde T= T$ universally. We then can show that $\mathbb{T}$-motives as well as Nori's motives are given by a certain category of functors on definable categories.

Details

ISSN :
00418994
Volume :
139
Database :
OpenAIRE
Journal :
Rendiconti del Seminario Matematico della Università di Padova
Accession number :
edsair.doi...........7f90aa8d14fa2604ee03fb44f9c5ac1d
Full Text :
https://doi.org/10.4171/rsmup/139-8