Back to Search Start Over

Theoretical study of laser-based phototherapies’ improvement via upconverting nanoparticles

Authors :
Efstathios P. Efstathopoulos
Mersini I. Makropoulou
Alexandros A. Serafetinides
E. Spyratou
Georgios Kareliotis
Source :
Journal of Physics: Conference Series. 1859:012043
Publication Year :
2021
Publisher :
IOP Publishing, 2021.

Abstract

The introduction of new upconverting nanoparticles (UPCNPs) in the tumor area is being investigated worldwide as a solution for deep tissue theranostics interventions. Moreover, as the development of biophotonics techniques permits bioimaging in nanoscale, both photodynamic and photothermal sensing should be achieved even at cellular level with minimum perturbation, i.e., in absence of any physical contact between cells and sensing units at a single-cell level via optical tweezers. In our work, we discuss the biophotonic upconversion mechanism of nanoparticles’ excitation/emission at cellular level, under laser trapping conditions, via considering laser radiation of NIR (specifically at λ = 808 nm) for optimal penetration in biological tissues. Moreover, a theoretical simulation model will be presented for evaluation of the electric field distribution in optically trapped particles. Water soluble UPCNPs with maximum absorbance wavelength at λ = 808 nm and emission at 545 nm and 660 nm will be studied. The photoluminescence of biocompatible UPCNPs could provide a promising powerful tool for PDT single-cell analysis and/or for photothermal enhancement and sensing in an optical tweezers’ platform.

Details

ISSN :
17426596 and 17426588
Volume :
1859
Database :
OpenAIRE
Journal :
Journal of Physics: Conference Series
Accession number :
edsair.doi...........812c6e300a032aec560b9b1a4a5d5575
Full Text :
https://doi.org/10.1088/1742-6596/1859/1/012043