Back to Search Start Over

Improved Yellow Light Emission in the Achievement of Dichromatic White Light Emitting Diodes

Authors :
Junxi Wang
Tongbo Wei
Xiaodong Wang
Xuecheng Wei
Jun Ma
Hongxi Lu
Ning Zhang
Zhao Si
Jinmin Li
Zhe Liu
Source :
MRS Proceedings. 1538:371-375
Publication Year :
2013
Publisher :
Springer Science and Business Media LLC, 2013.

Abstract

A study about the achievement of dichromatic white light-emitting diodes (LEDs) was performed. A series of dual wavelength LEDs with different last quantum-well (LQW) structure were fabricated. The bottom seven blue light QWs (close to n-GaN layer) of the four samples were the same. The LQW of sample A was 3 nm, and that of sample B, C and D were 6 nm, a special high In content ultra-thin layer was inserted in the middle of the LQW of sample C and on top of that of sample D. XRD results showed In concentration fluctuation and good interface quality of the four samples. PL measurements showed dual wavelength emitting, the blue light peak position of the four samples were almost the same, sample A with a narrower LQW showed an emission wavelength much shorter than that of sample B, C, D. EL measurement was done at an injection current of 100 mA. Sample A only showed LQW emission due to holes distribution. Because of wider LQW, the emission wavelength of sample B, C and D was longer and peak intensity was weaker. Sample D with insert layer on top of LQW showed strongest yellow light emission with a blue peak. As the injection current increased, sample A showed highest output light power due to narrower LQW. Of the other three samples with wider LQW, sample D showed highest output power. Effective yellow light emission has always been an obstacle to the achievement of dichromatic white LED. Sample D with insert layer close to p-GaN can confine the hole distribution more effectively hence the recombination of holes and electrons was enhanced, the yellow light emission was improved and dichromatic white LED was achieved.

Details

ISSN :
19464274 and 02729172
Volume :
1538
Database :
OpenAIRE
Journal :
MRS Proceedings
Accession number :
edsair.doi...........815813e1931343afb5e0f254f6ce3fb5
Full Text :
https://doi.org/10.1557/opl.2013.549