Back to Search Start Over

Invasion of Bassendean Dune Banksia Woodland by Phytophthora cinnamomi

Authors :
Joanna T. Tippett
Tcj Hill
B. L. Shearer
Source :
Australian Journal of Botany. 42:725
Publication Year :
1994
Publisher :
CSIRO Publishing, 1994.

Abstract

The rate and mechanism of the spread of Phytophthora cinnamomi in Banksia woodland of the Bassendean Dune system north of Perth, Western Australia was studied. Aerial photographs were used to measure the spread of disease in fronts longer than 5 km over 35 years. Fronts in upper slope positions moved downhill and uphill at 1.01 and 1.13 m year-1, respectively, while fronts in low-lying positions moved downgrade and upgrade (with and against the direction of water table flow) at 1.30 and 1.20 m year-1, respectively. Fronts in low-lying areas spread significantly faster than those on upper slopes. Excavations to 2 m depth of the root systems of 21 dying plants of Banksia attenuata R.Br., an overstorey co-dominant, revealed that 28% (3.9 roots/tree) of all first-order roots were infected. Assessment of the proportion of roots infected revealed a significant (P < 0.01) departure from uniform distribution of disease down the profile in both upper slope and drained flat sites. In 14 trees on dune slopes, 6-40 m above the aquifer, infection rate was higher than expected in roots lying at 21-40 cm depth, but lower than expected in roots below 1 m. Seventy three percent of infected roots lay in the top 40 cm of soil. In seven trees on a drained flat, 2-3 m above the aquifer, infection rate was high in the 21-60 cm horizon and also in roots below 1 m. Even though Phytophthora cinnamomi was active in the vicinity of the water table in trees on drained flats, the slow, steady spread of the disease in all landscape positions suggested that the primary mode of fungal invasion was through roots of susceptible vegetation. No evidence was found of accelerated spread of disease caused by the dispersal of zoospores.

Details

ISSN :
00671924
Volume :
42
Database :
OpenAIRE
Journal :
Australian Journal of Botany
Accession number :
edsair.doi...........827aad85963011b179f8ce513ee0820e