Back to Search
Start Over
Fourier Transform of Dini-Lipschitz Functions on Locally Compact Vilenkin Groups
- Source :
- p-Adic Numbers, Ultrametric Analysis and Applications. 12:231-246
- Publication Year :
- 2020
- Publisher :
- Pleiades Publishing Ltd, 2020.
-
Abstract
- Let $$G$$ be a locally compact bounded Vilenkin group, $$\Gamma$$ be the dual group of $$G$$ . Suppose that a function $$f(x)$$ belongs to the the Lebesgue class $$L^p(G)$$ , $$10$$ , $$\beta\in{\mathbb R}$$ , then for which values of $$r$$ we can guarantee that $$\widehat{f}\in L^r(\Gamma)$$ ? The result is an analogue of one classical theorem of E. Titchmarsh about the Fourier transform of functions from the Lipschitz classes on $${\mathbb R}$$ .
- Subjects :
- General Mathematics
010102 general mathematics
Dual group
Lebesgue integration
Lipschitz continuity
01 natural sciences
Combinatorics
symbols.namesake
Fourier transform
Bounded function
0103 physical sciences
symbols
010307 mathematical physics
Locally compact space
0101 mathematics
Classical theorem
Mathematics
Subjects
Details
- ISSN :
- 20700474 and 20700466
- Volume :
- 12
- Database :
- OpenAIRE
- Journal :
- p-Adic Numbers, Ultrametric Analysis and Applications
- Accession number :
- edsair.doi...........82ca93631dfb5b32457e0f3f0c47d20a
- Full Text :
- https://doi.org/10.1134/s207004662003005x