Back to Search Start Over

Fourier Transform of Dini-Lipschitz Functions on Locally Compact Vilenkin Groups

Authors :
Sergey S. Platonov
Source :
p-Adic Numbers, Ultrametric Analysis and Applications. 12:231-246
Publication Year :
2020
Publisher :
Pleiades Publishing Ltd, 2020.

Abstract

Let $$G$$ be a locally compact bounded Vilenkin group, $$\Gamma$$ be the dual group of $$G$$ . Suppose that a function $$f(x)$$ belongs to the the Lebesgue class $$L^p(G)$$ , $$10$$ , $$\beta\in{\mathbb R}$$ , then for which values of $$r$$ we can guarantee that $$\widehat{f}\in L^r(\Gamma)$$ ? The result is an analogue of one classical theorem of E. Titchmarsh about the Fourier transform of functions from the Lipschitz classes on $${\mathbb R}$$ .

Details

ISSN :
20700474 and 20700466
Volume :
12
Database :
OpenAIRE
Journal :
p-Adic Numbers, Ultrametric Analysis and Applications
Accession number :
edsair.doi...........82ca93631dfb5b32457e0f3f0c47d20a
Full Text :
https://doi.org/10.1134/s207004662003005x