Back to Search
Start Over
L models and multiple regressions designs
- Source :
- Statistical Papers. 50:869-885
- Publication Year :
- 2009
- Publisher :
- Springer Science and Business Media LLC, 2009.
-
Abstract
- Given an orthogonal model $${{\bf \lambda}}=\sum_{i=1}^m{{{\bf X}}_i}{\boldsymbol{\alpha}}_i$$ an L model $${{\bf y}}={\bf L}\left(\sum_{i=1}^m{{{\bf X}}_i}{\boldsymbol{\alpha}}_i\right)+{\bf e}$$ is obtained, and the only restriction is the linear independency of the column vectors of matrix L. Special cases of the L models correspond to blockwise diagonal matrices L = D(L1, . . . , Lc). In multiple regression designs this matrix will be of the form $${\bf L}={\bf D}(\check{{\bf X}}_1,\ldots,\check{{\bf X}}_{c})$$ with \({\check{{\bf X}}_j, j=1,\ldots,c}\) the model matrices of the individual regressions, while the original model will have fixed effects. In this way, we overcome the usual restriction of requiring all regressions to have the same model matrix.
Details
- ISSN :
- 16139798 and 09325026
- Volume :
- 50
- Database :
- OpenAIRE
- Journal :
- Statistical Papers
- Accession number :
- edsair.doi...........82df9a3a08fa568c5a88c21338434b97
- Full Text :
- https://doi.org/10.1007/s00362-009-0255-3