Back to Search Start Over

L models and multiple regressions designs

Authors :
João T. Mexia
Roman Zmyślony
Elsa Moreira
Miguel Fonseca
Source :
Statistical Papers. 50:869-885
Publication Year :
2009
Publisher :
Springer Science and Business Media LLC, 2009.

Abstract

Given an orthogonal model $${{\bf \lambda}}=\sum_{i=1}^m{{{\bf X}}_i}{\boldsymbol{\alpha}}_i$$ an L model $${{\bf y}}={\bf L}\left(\sum_{i=1}^m{{{\bf X}}_i}{\boldsymbol{\alpha}}_i\right)+{\bf e}$$ is obtained, and the only restriction is the linear independency of the column vectors of matrix L. Special cases of the L models correspond to blockwise diagonal matrices L = D(L1, . . . , Lc). In multiple regression designs this matrix will be of the form $${\bf L}={\bf D}(\check{{\bf X}}_1,\ldots,\check{{\bf X}}_{c})$$ with \({\check{{\bf X}}_j, j=1,\ldots,c}\) the model matrices of the individual regressions, while the original model will have fixed effects. In this way, we overcome the usual restriction of requiring all regressions to have the same model matrix.

Details

ISSN :
16139798 and 09325026
Volume :
50
Database :
OpenAIRE
Journal :
Statistical Papers
Accession number :
edsair.doi...........82df9a3a08fa568c5a88c21338434b97
Full Text :
https://doi.org/10.1007/s00362-009-0255-3