Sorry, I don't understand your search. ×
Back to Search Start Over

Superconducting quantum interference devices: State of the art and applications

Authors :
Reinhold Kleiner
John Clarke
Frank Ludwig
Dieter Koelle
Source :
Proceedings of the IEEE. 92:1534-1548
Publication Year :
2004
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2004.

Abstract

Superconducting quantum interference devices (SQUIDs) are sensitive detectors of magnetic flux. A SQUID consists of a superconducting loop interrupted by either one or two Josephson junctions for the RF or dc SQUID, respectively. Low transition temperature (T/sub c/) SQUIDs are fabricated from thin films of niobium. Immersed in liquid helium at 4.2 K, their flux noise is typically 10/sup -6//spl Phi//sub 0/ Hz/sup -1/2/, where /spl Phi//sub 0//spl equiv/h/2e is the flux quantum. High-T/sub c/ SQUIDs are fabricated from thin films of YBa/sub 2/Cu/sub 3/O/sub 7-x/, and are generally operated in liquid nitrogen at 77 K. Inductively coupled to an appropriate input circuit, SQUIDs measure a variety of physical quantities, including magnetic field, magnetic field gradient, voltage, and magnetic susceptibility. Systems are available for detecting magnetic signals from the brain, measuring the magnetic susceptibility of materials and geophysical core samples, magnetocardiography and nondestructive evaluation. SQUID "microscopes" detect magnetic nanoparticles attached to pathogens in an immunoassay technique and locate faults in semiconductor packages. A SQUID amplifier with an integrated resonant microstrip is within a factor of two of the quantum limit at 0.5 GHz and will be used in a search for axions. High-resolution magnetic resonance images are obtained at frequencies of a few kilohertz with a SQUID-based detector.

Details

ISSN :
00189219
Volume :
92
Database :
OpenAIRE
Journal :
Proceedings of the IEEE
Accession number :
edsair.doi...........83b7be3bd26d2f9394b36edbaa17ff8c