Back to Search
Start Over
The pro--Iwahori Hecke algebra of a reductive -adic group I
- Source :
- Compositio Mathematica. 152:693-753
- Publication Year :
- 2015
- Publisher :
- Wiley, 2015.
-
Abstract
- Let $R$ be a commutative ring, let $F$ be a locally compact non-archimedean field of finite residual field $k$ of characteristic $p$, and let $\mathbf{G}$ be a connected reductive $F$-group. We show that the pro-$p$-Iwahori Hecke $R$-algebra of $G=\mathbf{G}(F)$ admits a presentation similar to the Iwahori–Matsumoto presentation of the Iwahori Hecke algebra of a Chevalley group, and alcove walk bases satisfying Bernstein relations. This was previously known only for a $F$-split group $\mathbf{G}$.
Details
- ISSN :
- 15705846 and 0010437X
- Volume :
- 152
- Database :
- OpenAIRE
- Journal :
- Compositio Mathematica
- Accession number :
- edsair.doi...........8425ea7b792ea7cf3445df88a2b63021
- Full Text :
- https://doi.org/10.1112/s0010437x15007666