Back to Search Start Over

The pro--Iwahori Hecke algebra of a reductive -adic group I

Authors :
Marie-France Vignéras
Source :
Compositio Mathematica. 152:693-753
Publication Year :
2015
Publisher :
Wiley, 2015.

Abstract

Let $R$ be a commutative ring, let $F$ be a locally compact non-archimedean field of finite residual field $k$ of characteristic $p$, and let $\mathbf{G}$ be a connected reductive $F$-group. We show that the pro-$p$-Iwahori Hecke $R$-algebra of $G=\mathbf{G}(F)$ admits a presentation similar to the Iwahori–Matsumoto presentation of the Iwahori Hecke algebra of a Chevalley group, and alcove walk bases satisfying Bernstein relations. This was previously known only for a $F$-split group $\mathbf{G}$.

Details

ISSN :
15705846 and 0010437X
Volume :
152
Database :
OpenAIRE
Journal :
Compositio Mathematica
Accession number :
edsair.doi...........8425ea7b792ea7cf3445df88a2b63021
Full Text :
https://doi.org/10.1112/s0010437x15007666