Back to Search Start Over

Double-Loop Control Strategy With Cascaded Model Predictive Control to Improve Frequency Regulation for Islanded Microgrids

Authors :
Xi Liu
Tong Liu
Shunquan Hu
Alian Chen
Xiaoyan Li
Feng Gao
Source :
IEEE Transactions on Smart Grid. 13:3954-3967
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

The microgrid (MG) which effectively utilizes distributed energy resources (DERs) is crucial to the modern power system. However, since the islanded MG with high penetration of DERs inherently lacks sufficient inertial support, the frequency regulation is challenging for the voltage source converter (VSC)-based MG. This paper presents a cascaded model predictive control (MPC) scheme for both the outer and inner loops of primary control, which improves frequency regulation capability with the advantage of satisfactory dynamic response and high tracking accuracy. In the outer loop, to enhance dynamic frequency characteristics, the MPC-based virtual synchronous generator (VSG) method with two control objectives is proposed. According to the movement direction of frequency under different load switching cases, the corresponding frequency response process speeded up or slowed down properly. In the inner loop, an improved finite-set double vector MPC (DV-MPV) is proposed to follow the output reference from the outer loop, which contributes to accurate frequency control by reducing tracking error, and faster dynamic response as well. The simulation and experimental results further demonstrated the effectiveness of the proposed method.

Details

ISSN :
19493061 and 19493053
Volume :
13
Database :
OpenAIRE
Journal :
IEEE Transactions on Smart Grid
Accession number :
edsair.doi...........86b85ea10ec9dd4259f7f1dc75815d49
Full Text :
https://doi.org/10.1109/tsg.2021.3129220