Back to Search Start Over

Optimization of hybrid laser arc welding of 42CrMo steel to suppress pore formation

Authors :
Cong Zhou
Mao Shuai
Chen Fei
Genyu Chen
Yan Zhang
Source :
Applied Physics A. 123
Publication Year :
2017
Publisher :
Springer Science and Business Media LLC, 2017.

Abstract

The hybrid laser arc welding (HLAW) of 42CrMo quenched and tempered steel was conducted. The effect of the processing parameters, such as the relative positions of the laser and the arc, the shielding gas flow rate, the defocusing distance, the laser power, the wire feed rate and the welding speed, on the pore formation was analyzed, the morphological characteristics of the pores were analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the majority of the pores were invasive. The pores formed at the leading a laser (LA) welding process were fewer than those at the leading a arc (AL) welding process. Increasing the shielding gas flow rate could also facilitate the reduction of pores. The laser power and the welding speed were two key process parameters to reduce the pores. The flow of the molten pool, the weld cooling rate and the pore escaping rate as a result of different parameters could all affect pore formation. An ideal pore-free weld was obtained for the optimal welding process parameters.

Details

ISSN :
14320630 and 09478396
Volume :
123
Database :
OpenAIRE
Journal :
Applied Physics A
Accession number :
edsair.doi...........881c9bb54646761d170c849262547e20