Back to Search Start Over

Stored platelets alter glycerophospholipid and sphingolipid species, which are differentially transferred to newly released extracellular vesicles

Authors :
Alfred Boettcher
Gerhard Liebisch
Dzenan Kilalic
Evelyn Orsó
Katharina Ruebsaamen
Norbert Ahrens
Gerd Schmitz
Max Scherer
Annika Pienimaeki-Roemer
Source :
Transfusion. 53:612-626
Publication Year :
2012
Publisher :
Wiley, 2012.

Abstract

BACKGROUND: Stored platelet concentrates (PLCs) for transfusion develop a platelet storage lesion (PSL), resulting in decreased platelet (PLT) viability and function. The processes leading to PSL have not been described in detail and no data describe molecular changes occurring in all three components of stored PLCs: PLTs, PLC extracellular vesicles (PLC-EVs), and plasma. STUDY DESIGN AND METHODS: Fifty PLCs from healthy individuals were stored under standard blood banking conditions for 5 days. Changes in cholesterol, glycerophospholipid, and sphingolipid species were analyzed in PLTs, PLC-EVs, and plasma by mass spectrometry and metabolic labeling. Immunoblots were performed to compare PLT and PLC-EV protein expression. RESULTS: During 5 days, PLTs transferred glycerophospholipids, cholesterol, and sphingolipids to newly formed PLC-EVs, which increased corresponding lipids by 30%. Stored PLTs significantly increased ceramide (Cer; +53%) and decreased sphingosine-1-phosphate (−53%), shifting sphingolipid metabolism toward Cer. In contrast, plasma accumulated minor sphingolipids. Compared to PLTs, fresh PLC-EVs were enriched in lysophosphatidic acid (60-fold) and during storage showed significant increases in cholesterol, sphingomyelin, dihydrosphingomyelin, plasmalogen, and lysophosphatidylcholine species, as well as accumulation of apolipoproteins A-I, E, and J/clusterin. CONCLUSION: This is the first detailed analysis of lipid species in all PLC components during PLC storage, which might reflect mechanisms active during in vivo PLT senescence. Stored PLTs reduce minor sphingolipids and shift sphingolipid metabolism toward Cer, whereas in the plasma fraction minor sphingolipids increase. The composition of PLC-EVs resembles that of lipid rafts and confirms their role as carriers of bioactive molecules and master regulators in vascular disease.

Details

ISSN :
00411132
Volume :
53
Database :
OpenAIRE
Journal :
Transfusion
Accession number :
edsair.doi...........89421e4ac0f3a6bafedb0b1908d5458e
Full Text :
https://doi.org/10.1111/j.1537-2995.2012.03775.x