Back to Search
Start Over
Existence of normalized solutions for the coupled elliptic system with quadratic nonlinearity
- Source :
- Advanced Nonlinear Studies. 22:203-227
- Publication Year :
- 2022
- Publisher :
- Walter de Gruyter GmbH, 2022.
-
Abstract
- In the present paper, we study the existence of the normalized solutions for the following coupled elliptic system with quadratic nonlinearity − Δ u − λ 1 u = μ 1 ∣ u ∣ u + β u v in R N , − Δ v − λ 2 v = μ 2 ∣ v ∣ v + β 2 u 2 in R N , \left\{\begin{array}{ll}-\Delta u-{\lambda }_{1}u={\mu }_{1}| u| u+\beta uv\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\\ -\Delta v-{\lambda }_{2}v={\mu }_{2}| v| v+\frac{\beta }{2}{u}^{2}\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\end{array}\right. where u , v u,v satisfying the additional condition ∫ R N u 2 d x = a 1 , ∫ R N v 2 d x = a 2 . \mathop{\int }\limits_{{{\mathbb{R}}}^{N}}{u}^{2}{\rm{d}}x={a}_{1},\hspace{1em}\mathop{\int }\limits_{{{\mathbb{R}}}^{N}}{v}^{2}{\rm{d}}x={a}_{2}. On the one hand, we prove the existence of minimizer for the system with L 2 {L}^{2} -subcritical growth ( N ≤ 3 N\le 3 ). On the other hand, we prove the existence results for different ranges of the coupling parameter β > 0 \beta \gt 0 with L 2 {L}^{2} -supercritical growth ( N = 5 N=5 ). Our argument is based on the rearrangement techniques and the minimax construction.
- Subjects :
- General Mathematics
Statistical and Nonlinear Physics
Subjects
Details
- ISSN :
- 21690375
- Volume :
- 22
- Database :
- OpenAIRE
- Journal :
- Advanced Nonlinear Studies
- Accession number :
- edsair.doi...........8b568d8637de4ea49cd89c7f7428f371