Back to Search Start Over

Development of the multigroup cross section library for the CASL neutronics simulator MPACT: Method and procedure

Authors :
Kevin T. Clarno
Kang Seog Kim
Mark L Williams
Dorothea Wiarda
Source :
Annals of Nuclear Energy. 133:46-58
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

The MPACT neutronics module of the Consortium for Advanced Simulation of Light Water Reactors (CASL) core simulator is a 3D whole core transport code being developed for the CASL toolset known as the Virtual Environment for Reactor Analysis (VERA). Key characteristics of the MPACT code include a subgroup method for resonance self-shielding and a whole-core transport solver with a 2D/1D synthesis method. The AMPX and SCALE code packages have been significantly improved to include intermediate resonance parameters, as well as new modules to enhance the accuracy of resonance data and scattering matrices for the Bondarenko approach and transport cross sections of hydrogen. In addition, CASL XSTools have been developed to generate the MPACT multigroup cross section library. A simple super-homogenization method for 238U has been developed to resolve reaction rate discrepancy issues caused by angle-dependent total cross sections, poor scattering matrices, and a poor resonance interference model at coarse group structure. Due to the limitation of computing capacity that can occur even in high performance computing, a new 51-group structure has been developed for efficient simulation that is applicable for both pressurized water reactor (PWR) and boiling water reactor (BWR) simulations. A new ENDF/B-VII.1 MPACT 51-group library has been developed using the AMPX/SCALE and XSTools code packages, and it has been verified and validated by performing various benchmark calculations.

Details

ISSN :
03064549
Volume :
133
Database :
OpenAIRE
Journal :
Annals of Nuclear Energy
Accession number :
edsair.doi...........8bc61954816e3f6787db2d60c45149ed
Full Text :
https://doi.org/10.1016/j.anucene.2019.05.010