Back to Search
Start Over
Customization of Sn2P2S6 ferroelectrics by post-growth solid-state diffusion doping
- Source :
- Journal of Materials Chemistry C. 8:9975-9985
- Publication Year :
- 2020
- Publisher :
- Royal Society of Chemistry (RSC), 2020.
-
Abstract
- For the first time, we demonstrated successful post-synthesis incorporation of metal dopants at elevated temperature into a host structure of Sn2P2S6, known as the grandfather of dichalcogenide ferroelectrics with a formula M2P2X6 (M = metal and X = chalcogen). With the example of Cu, we show that the integration of dopant atoms into the bulk of an already grown crystal could be easily tuned up to 0.5 at% affecting the structural, optical, vibrational, electrical, and ferroelectric properties. Thermally diffused copper atoms in Sn2P2S6 bulk are in the metallic state, inducing a multiaxial expansion of the Sn2P2S6 unit cell for 2–3.4%. The energy reduction between indirect and direct optical transitions was observed, combined by small hardening for acoustic and soft optical vibrational modes originating in the partial substitution of Sn by Cu in the Sn2P2S6 crystal lattice. Similar to hydrostatic pressure, the structurally bonded copper initiates a small downward shift in the critical temperature Tc. The presence of copper has a substantial impact on the shape smearing of the ferroelectric domains as well as on the behaviour of the dielectric permittivity. The real part of the dielectric constant e′ reaches its maximal value at intermediate concentrations of Cu 0% < x < 0.5%, showing an ∼20% increase with respect to the parent structure. The incorporated metal atoms provoke a monotonous expansion of the ferroelectric P–E loops along the increased dopant content direction. An increase in the electrical conductivity at higher Cu concentration reveals a trend for inducing a metal-like behaviour.
- Subjects :
- Materials science
Condensed matter physics
Dopant
Hydrostatic pressure
chemistry.chemical_element
02 engineering and technology
General Chemistry
Dielectric
Crystal structure
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
Ferroelectricity
Copper
0104 chemical sciences
Atomic diffusion
chemistry
Electrical resistivity and conductivity
Materials Chemistry
0210 nano-technology
Subjects
Details
- ISSN :
- 20507534 and 20507526
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- Journal of Materials Chemistry C
- Accession number :
- edsair.doi...........8e046eac9359c1627d4fad25349fbead
- Full Text :
- https://doi.org/10.1039/d0tc02248a