Back to Search Start Over

Advanced nanoporous separators for stable lithium metal electrodeposition at ultra-high current densities in liquid electrolytes

Authors :
Jingling Yang
Chung-Yuan Mou
Kuei-Hsien Chen
Heng-Liang Wu
Chun-Yao Wang
Chun-Chieh Wang
Source :
Journal of Materials Chemistry A. 8:5095-5104
Publication Year :
2020
Publisher :
Royal Society of Chemistry (RSC), 2020.

Abstract

Lithium metal anodes form a dendritic structure after cycling which causes an internal short circuit in flammable electrolytes and results in battery fires. Today's separators are insufficient for suppressing the formation of lithium dendrites. Herein, we report on the use of mesoporous silica thin films (MSTFs) with perpendicular nanochannels (pore size ∼5 nm) stacking on an anodic aluminum oxide (AAO) membrane as the MSTF⊥AAO separator for advancing Li metal batteries. The nanoporous MSTF⊥AAO separator with novel inorganic structures shows ultra-long term stability of Li plating/stripping in Li–Li cells at an ultra-high current density and capacity (10 mA cm−2 and 5 mA h cm−2). A significant improvement over the state-of-the-art separator is evaluated based on three performance indicators, e.g. cycle life, current density and capacity. In Li–Cu cells, the MSTF⊥AAO separator shows a coulombic efficiency of >99.9% at a current density of 10 mA cm−2 for more than 250 h of cycling. The separator gives improved rate capability in Li–LiFePO4 (LFP) batteries. The excellent performance of the MSTF⊥AAO separator is due to good wetting of electrolytes, straight nanopores with negative charges, uniform Li deposition and blocking the finest dendrite.

Details

ISSN :
20507496 and 20507488
Volume :
8
Database :
OpenAIRE
Journal :
Journal of Materials Chemistry A
Accession number :
edsair.doi...........8e3489382c0358a341afa9257848362e
Full Text :
https://doi.org/10.1039/c9ta13778e