Back to Search Start Over

Targeting MicroRNA-192-5p, a Downstream Effector of NOXs (NADPH Oxidases), Reverses Endothelial DHFR (Dihydrofolate Reductase) Deficiency to Attenuate Abdominal Aortic Aneurysm Formation

Authors :
Taro Narumi
Hua Cai
Priya Murugesan
Kai Huang
Norika Mengchia Liu
Yixuan Zhang
Qiang Li
Yusi Wu
Source :
Hypertension. 78:282-293
Publication Year :
2021
Publisher :
Ovid Technologies (Wolters Kluwer Health), 2021.

Abstract

We have shown that endothelial-specific DHFR (dihydrofolate reductase) deficiency underlies eNOS (endothelial NO synthase) uncoupling and formation of abdominal aortic aneurysm (AAA). Here, we examined a novel role of microRNA-192-5p in mediating NOX (NADPH oxidase)-dependent DHFR deficiency and AAA formation. microRNA-192-5p is predicted to target DHFR. Intriguingly, homo sapiens–microRNA-192-5p expression was substantially upregulated in human patients with AAA. In human aortic endothelial cells exposed to hydrogen peroxide (H 2 O 2 ), homo sapiens–microRNA-192-5p expression was significantly upregulated. This was accompanied by a marked downregulation in DHFR mRNA and protein expression, which was restored by homo sapiens–microRNA-192-5p–specific inhibitor. Of note, microRNA-192-5p expression was markedly upregulated in Ang II (angiotensin II)–infused hph-1 (hyperphenylalaninemia 1) mice, which was attenuated in hph-1–NOX1, hph-1–NOX2, hph-1–neutrophil cytosol factor 1, and hph-1–NOX4 double mutant mice where AAA incidence was also abrogated, indicating a downstream effector role of microRNA-192-5p following NOX activation. In vivo treatment with mus musculus–microRNA-192-5p inhibitor attenuated expansion of abdominal aortas in Ang II–infused hph-1 mice as defined by ultrasound and postmortem inspection. It also reversed features of vascular remodeling including matrix degradation, adventitial hypertrophy, and formation of intraluminal thrombi. These animals had restored DHFR mRNA and protein expression, attenuated superoxide production, recoupled eNOS, and preserved NO bioavailability. In conclusion, our data for the first time demonstrate a critical role of microRNA-192-5p in mediating NOX-dependent DHFR deficiency and AAA formation, inhibition of which is robustly effective in attenuating development of AAA. Since the mouse and human microRNA-192-5p sequences are identical, the microRNA-192-5p inhibitors may be readily translatable into novel therapeutics for the treatment of AAA.

Details

ISSN :
15244563 and 0194911X
Volume :
78
Database :
OpenAIRE
Journal :
Hypertension
Accession number :
edsair.doi...........8e4e0cc69c8b9681503cdf34a55d9c54
Full Text :
https://doi.org/10.1161/hypertensionaha.120.15070