Back to Search
Start Over
The zebrafish presomitic mesoderm elongates through compression-extension
- Publication Year :
- 2021
- Publisher :
- Cold Spring Harbor Laboratory, 2021.
-
Abstract
- In vertebrate embryos the presomitic mesoderm become progressively segmented into somites at the anterior end while extending along the anterior-posterior axis. A commonly adopted model to explain how this tissue elongates is that of posterior growth, driven in part by the addition of new cells from uncommitted progenitor populations in the tailbud. However, in zebrafish, much of somitogenesis is associated with an absence of overall volume increase and posterior progenitors do not contribute new cells until the final stages of somitogenesis. Here, we perform a comprehensive 3D morphometric analysis of the paraxial mesoderm and reveal that extension is linked to a volumetric decrease, compression in both dorsal-ventral and medio-lateral axes, and an increase in cell density. We also find that individual cells decrease in their cell volume over successive somite stages. Live cell tracking confirms that much of this tissue deformation occurs within the presomitic mesoderm progenitor zone and is associated with non-directional rearrangement. Furthermore, unlike the trunk somites that are laid down during gastrulation, tail somites develop from a tissue that can continue to elongate in the absence of functional PCP signalling. Taken together, we propose a compression-extension mechanism of tissue elongation that highlights the need to better understand the role of tissue intrinsic and extrinsic forces play in regulating morphogenesis.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........8fa93483edfa9b941533c14b88f68603
- Full Text :
- https://doi.org/10.1101/2021.03.11.434927