Back to Search Start Over

A spin–orbit coupling-induced two-dimensional electron gas in BiAlO3/SrTiO3 heterostructures

Authors :
Jiji Pulikkotil
Source :
Physical Chemistry Chemical Physics. 22:3122-3127
Publication Year :
2020
Publisher :
Royal Society of Chemistry (RSC), 2020.

Abstract

Both LaAlO3 and BiAlO3 are isostructural, isoelectronic and band insulators. Therefore, in analogy to the LaAlO3/SrTiO3 heterostructure, a quasi two dimensional electron gas (q-2DEG) could be anticipated in BiAlO3/SrTiO3 heterostructures. Our density functional theory based scalar relativistic calculations show that BiAlO3/SrTiO3 heterostructures remain insulating for a BiAlO3 film thickness up to 5 unit cells. However, with spin orbit coupling included in the crystal Hamiltonian, we find a thickness dependent insulator to metal transition for BiAlO3/SrTiO3 heterostructures. However, unlike the Ti3+/Ti4+ electronic reconstruction in LaAlO3/SrTiO3, the conductivity in BiAlO3/SrTiO3 is found to originate from the subsurface Bi 6p states. The results suggest that the properties of q-2DEG in BiAlO3/SrTiO3 can be controlled using an external electric field, leading to a wide range of solid state applications.

Details

ISSN :
14639084 and 14639076
Volume :
22
Database :
OpenAIRE
Journal :
Physical Chemistry Chemical Physics
Accession number :
edsair.doi...........904d6dc7b13570c5e004537cf962e4c4
Full Text :
https://doi.org/10.1039/c9cp05737d