Back to Search Start Over

Phenological changes in intertidal con-specific gastropods in response to climate warming

Authors :
Stephen J. Hawkins
Richard C. Thompson
Pippa J. Moore
Source :
Global Change Biology. 17:709-719
Publication Year :
2011
Publisher :
Wiley, 2011.

Abstract

There is substantial evidence from terrestrial and freshwater systems of species responding to climate change through changes in their phenology. In the marine environment, however, there is less evidence. Using historic (1946–1949) and contemporary (2003–2007) data, collected from rocky shores of south-west Britain, we investigated the affect of recent climate warming on the reproductive phenology of two con-specific intertidal limpet grazers, with cool/boreal and warm/lusitanian centres of distribution. Reproductive development in the southern limpet, Patella depressa, has advanced, on average, 10.2 days per decade since the 1940s, with a longer reproductive season and more of the population reproductively active. The peak in the proportion of the population in advanced stages of gonad development was positively correlated with sea surface temperature (SST) in late spring/early summer, which has increased between the 1940s and 2000s. The advance in peak reproductive development of this species is double the average observed for terrestrial and freshwater systems and indicates, along with other studies, that marine species may be responding faster to climate warming. In contrast, the northern limpet, Patella vulgata, has experienced a delay in the timing of its reproductive development (on average 3.3 days per decade), as well as an increase in reproductive failure years and a reduction in the proportion of the population reaching advanced gonad stages. These results are the first to demonstrate a delay in the reproductive development of a cool-temperate, winter spawner, towards cooler more favourable environmental conditions in response to climate warming. Such a delay in spawning will potentially lead to trophic miss-matches, resulting in a rapid nonlinear decline of this species.

Details

ISSN :
13541013
Volume :
17
Database :
OpenAIRE
Journal :
Global Change Biology
Accession number :
edsair.doi...........935d284b23c35f5f3b0ee12377992b3c