Back to Search
Start Over
Adaptive Rejection Metropolis Simulated Annealing for Detecting Global Maximum Regions
- Source :
- Methodology and Computing in Applied Probability. 18:1-19
- Publication Year :
- 2014
- Publisher :
- Springer Science and Business Media LLC, 2014.
-
Abstract
- A finite mixture model has been used to fit the data from heterogeneous populations to many applications. An Expectation Maximization (EM) algorithm is the most popular method to estimate parameters in a finite mixture model. A Bayesian approach is another method for fitting a mixture model. However, the EM algorithm often converges to the local maximum regions, and it is sensitive to the choice of starting points. In the Bayesian approach, the Markov Chain Monte Carlo (MCMC) sometimes converges to the local mode and is difficult to move to another mode. Hence, in this paper we propose a new method to improve the limitation of EM algorithm so that the EM can estimate the parameters at the global maximum region and to develop a more effective Bayesian approach so that the MCMC chain moves from one mode to another more easily in the mixture model. Our approach is developed by using both simulated annealing (SA) and adaptive rejection metropolis sampling (ARMS). Although SA is a well-known approach for detecting distinct modes, the limitation of SA is the difficulty in choosing sequences of proper proposal distributions for a target distribution. Since ARMS uses a piecewise linear envelope function for a proposal distribution, we incorporate ARMS into an SA approach so that we can start a more proper proposal distribution and detect separate modes. As a result, we can detect the maximum region and estimate parameters for this global region. We refer to this approach as ARMS annealing. By putting together ARMS annealing with the EM algorithm and with the Bayesian approach, respectively, we have proposed two approaches: an EM-ARMS annealing algorithm and a Bayesian-ARMS annealing approach. We compare our two approaches with traditional EM algorithm alone and Bayesian approach alone using simulation, showing that our two approaches are comparable to each other but perform better than EM algorithm alone and Bayesian approach alone. Our two approaches detect the global maximum region well and estimate the parameters in this region. We demonstrate the advantage of our approaches using an example of the mixture of two Poisson regression models. This mixture model is used to analyze a survey data on the number of charitable donations.
- Subjects :
- Statistics and Probability
0209 industrial biotechnology
Mathematical optimization
General Mathematics
Bayesian probability
0211 other engineering and technologies
Markov chain Monte Carlo
02 engineering and technology
Mixture model
Adaptive simulated annealing
Target distribution
Piecewise linear function
symbols.namesake
020901 industrial engineering & automation
Expectation–maximization algorithm
Simulated annealing
symbols
021106 design practice & management
Mathematics
Subjects
Details
- ISSN :
- 15737713 and 13875841
- Volume :
- 18
- Database :
- OpenAIRE
- Journal :
- Methodology and Computing in Applied Probability
- Accession number :
- edsair.doi...........93605ee52b7add6f7f798779c3fac64b
- Full Text :
- https://doi.org/10.1007/s11009-014-9395-6