Back to Search Start Over

MoS2 nanosheets grown on hollow carbon spheres as a strong polysulfide anchor for high performance lithium sulfur batteries

Authors :
Miaoran Li
Fang Wang
Ying Zhu
Jie Sun
Zong-Huai Liu
Zhibin Lei
Huiyuan Peng
Yang Pei
Ruyue Shi
Xuexia He
Source :
Nanoscale. 12:23636-23644
Publication Year :
2020
Publisher :
Royal Society of Chemistry (RSC), 2020.

Abstract

Lithium sulfur batteries are expected to be one of the most promising energy storage systems due to their high energy density, low cost and environmental friendliness. However, the shuttle effect of lithium polysulfides severely hampers their practical application. The design of the sulfur cathode is one of the most important approaches to overcome the problem. In this work, MoS2 nanosheets have been successfully grown on the surface of hollow carbon spheres (HCS) to obtain MoS2@HCS nanocomposites with uniform morphology. The growth behavior of MoS2 nanosheets was also proved by adjusting the pore structure of HCS. With a sulfur loading of 74%, the MoS2@HCS/S cathode exhibits a high initial reversible capacity of 1419 mA h g-1 at a current density of 0.1 C and remains at 1010 mA h g-1 after 100 cycles. Even at 0.5 C, a capacity of 795 mA h g-1 can be retained after 600 cycles, corresponding to a capacity retention rate of 63.1%. By adjusting the concentration of the sulfur source, the relationship between different growth quantities of MoS2 and the cycling performance of the battery was also investigated. The excellent electrochemical performance of the MoS2@HCS/S cathode can be fully attributed to its physical and chemical double adsorption effect on lithium polysulfides, which has been confirmed through the visible adsorption and X-ray Photoelectron Spectroscopy (XPS) experiments. This work provides a simple design concept and method to synthesize a nanocomposite-based sulfur host for high performance lithium sulfur batteries.

Details

ISSN :
20403372 and 20403364
Volume :
12
Database :
OpenAIRE
Journal :
Nanoscale
Accession number :
edsair.doi...........93bad875013aa3b70d4e3a3bf9e9e40e
Full Text :
https://doi.org/10.1039/d0nr05727d