Back to Search Start Over

HazDesNet: An End-to-End Network for Haze Density Prediction

Authors :
Wenjun Zhang
Guangtao Zhai
Xiaokang Yang
Jiahe Zhang
Jiantao Zhou
Yucheng Zhu
Xiongkuo Min
Source :
IEEE Transactions on Intelligent Transportation Systems. 23:3087-3102
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

Vision-based intelligent systems such as driver assistance systems and transportation systems should take into account weather conditions. The presence of haze in images can be a critical threat to driving scenarios. Haze density measures the visibility and usability of hazy images captured in real-world conditions. The prediction of haze density can be valuable in various vision-based intelligent systems, especially in those systems deployed in outdoor environments. Haze density prediction is a challenging task since the haze and many scene contents have a lot in common in appearance. Existing methods generally utilize different priors and design complex handcrafted features to predict the visibility or haze density of the image. In this article, we propose a novel end-to-end convolutional neural network (CNN) based method to predict haze density, named as HazDesNet. Our HazDesNet takes a hazy image as input and predicts a pixel-level haze density map. The density map is then refined and smoothed, and the average of the refined map is calculated as the global haze density of the image. To verify the performance of HazDesNet, a subjective human study is performed to build a Human Perceptual Haze Density (HPHD) database, which includes 500 real-world hazy images and 100 synthetic hazy images, and the corresponding human-rated perceptual haze density scores. Experimental results show that our method achieves the best haze density prediction performance on our built HPHD database and existing databases. Besides the global quantitative results, our HazDesNet is capable of predicting a continuous, stable, fine, and high-resolution haze density map. We will make the database and code publicly available at https://github.com/JiaheZhang/HazDesNet.

Details

ISSN :
15580016 and 15249050
Volume :
23
Database :
OpenAIRE
Journal :
IEEE Transactions on Intelligent Transportation Systems
Accession number :
edsair.doi...........9467e9b93710427573cc98e90fdb47bd
Full Text :
https://doi.org/10.1109/tits.2020.3030673