Back to Search
Start Over
Hexylamine functionalized reduced graphene oxide/polyurethane nanocomposite-coated nylon for enhanced hydrogen gas barrier film
- Source :
- Journal of Membrane Science. 500:106-114
- Publication Year :
- 2016
- Publisher :
- Elsevier BV, 2016.
-
Abstract
- Hexylamine (HA) functionalized reduced graphene oxide (RGO-HA) was prepared via the modification of graphene oxide (GO) with HA, followed by reduction with hydrazine hydrate. The structure of RGO-HA was confirmed using various characterization techniques. RGO-HA was easily dispersed in several organic solvents due to its hydrophobic nature. Accordingly, RGO-HA/polyurethane (PU) composites were synthesized using different amounts of RGO-HA for their potential application in the field of barrier materials. Fourier-transform infrared spectroscopy (FTIR), wide angle X-ray diffraction (WAXS) analysis, and field emission scanning electron microscopy (FESEM) showed that RGO-HA in PU was fully exfoliated and uniformly dispersed. The hydrogen gas barrier films were prepared by spray coating of RGO-HA/PU nanocomposite solutions on nylon films. Good attachment between the nylon surface and nanocomposite was confirmed by cross sectional field emission scanning electron microscopy. The nanocomposite coated nylon film having 43.3 wt% RGO-HA exhibited an 82% decrease in the hydrogen gas transmission rate (GTR) compared to a pure nylon film. The high reduction in GTR values of the coated films may motivate to use alkyl amine-modified reduced graphene oxide and PU nanocomposite for the future development of effective barrier materials.
- Subjects :
- Materials science
Hydrogen
Oxide
chemistry.chemical_element
Filtration and Separation
02 engineering and technology
010402 general chemistry
01 natural sciences
Biochemistry
law.invention
chemistry.chemical_compound
Hexylamine
law
Polymer chemistry
General Materials Science
Physical and Theoretical Chemistry
Fourier transform infrared spectroscopy
Alkyl
Polyurethane
chemistry.chemical_classification
Nanocomposite
Graphene
021001 nanoscience & nanotechnology
0104 chemical sciences
chemistry
Chemical engineering
0210 nano-technology
Subjects
Details
- ISSN :
- 03767388
- Volume :
- 500
- Database :
- OpenAIRE
- Journal :
- Journal of Membrane Science
- Accession number :
- edsair.doi...........95c9195cb13c14d127253019147e166f
- Full Text :
- https://doi.org/10.1016/j.memsci.2015.11.029