Back to Search Start Over

Hexylamine functionalized reduced graphene oxide/polyurethane nanocomposite-coated nylon for enhanced hydrogen gas barrier film

Authors :
Joong Hee Lee
Woong Park
Parthasarathi Bandyopadhyay
Elias Uddin
Nam Hoon Kim
Hong-Gun Kim
Rama K. Layek
Source :
Journal of Membrane Science. 500:106-114
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

Hexylamine (HA) functionalized reduced graphene oxide (RGO-HA) was prepared via the modification of graphene oxide (GO) with HA, followed by reduction with hydrazine hydrate. The structure of RGO-HA was confirmed using various characterization techniques. RGO-HA was easily dispersed in several organic solvents due to its hydrophobic nature. Accordingly, RGO-HA/polyurethane (PU) composites were synthesized using different amounts of RGO-HA for their potential application in the field of barrier materials. Fourier-transform infrared spectroscopy (FTIR), wide angle X-ray diffraction (WAXS) analysis, and field emission scanning electron microscopy (FESEM) showed that RGO-HA in PU was fully exfoliated and uniformly dispersed. The hydrogen gas barrier films were prepared by spray coating of RGO-HA/PU nanocomposite solutions on nylon films. Good attachment between the nylon surface and nanocomposite was confirmed by cross sectional field emission scanning electron microscopy. The nanocomposite coated nylon film having 43.3 wt% RGO-HA exhibited an 82% decrease in the hydrogen gas transmission rate (GTR) compared to a pure nylon film. The high reduction in GTR values of the coated films may motivate to use alkyl amine-modified reduced graphene oxide and PU nanocomposite for the future development of effective barrier materials.

Details

ISSN :
03767388
Volume :
500
Database :
OpenAIRE
Journal :
Journal of Membrane Science
Accession number :
edsair.doi...........95c9195cb13c14d127253019147e166f
Full Text :
https://doi.org/10.1016/j.memsci.2015.11.029