Back to Search
Start Over
On the kth root partition function
- Source :
- International Journal of Number Theory. 17:2071-2085
- Publication Year :
- 2021
- Publisher :
- World Scientific Pub Co Pte Ltd, 2021.
-
Abstract
- For any positive integer [Formula: see text], let [Formula: see text] be the number of solutions of the equation [Formula: see text] with integers [Formula: see text], where [Formula: see text] is the integral part of real number [Formula: see text]. Recently, Luca and Ralaivaosaona gave an asymptotic formula for [Formula: see text]. In this paper, we give an asymptotic development of [Formula: see text] for all [Formula: see text]. Moreover, we prove that the number of such partitions is even (respectively, odd) infinitely often.
- Subjects :
- Polynomial
Partition function (quantum field theory)
Algebra and Number Theory
Computer Science::Information Retrieval
Astrophysics::Instrumentation and Methods for Astrophysics
Root (chord)
Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)
ADK
Combinatorics
TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES
Integer
ComputingMethodologies_DOCUMENTANDTEXTPROCESSING
Computer Science::General Literature
Asymptotic formula
ComputingMilieux_MISCELLANEOUS
Mathematics
Real number
Subjects
Details
- ISSN :
- 17937310 and 17930421
- Volume :
- 17
- Database :
- OpenAIRE
- Journal :
- International Journal of Number Theory
- Accession number :
- edsair.doi...........971b52146048e8f0006807b5d81ff8ae