Back to Search Start Over

Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression

Authors :
Prachitara Satapathy
Pradipta Kishore Dash
Jyotirmayee Naik
Source :
Applied Soft Computing. 70:1167-1188
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

This paper presents an efficient non-iterative hybrid empirical mode decomposition (EMD) and kernel ridge regression (KRR) for significantly accurate short-term wind speed and wind power prediction. The original non-linear and non-stationary wind speed and wind power time series data are decomposed using EMD to isolate the mutual effects between different components. The proposed EMD-KRR model is tested for predicting wind speed and wind power time series data over a time horizon spanning intervals of 10 min, 30 min, 1 h and 3 h ahead, respectively. Further the performance of EMD-KRR prediction model is compared with two other widely used non-iterative prediction models like EMD based Random vector functional link network (RVFL), and EMD based Extreme Learning Machine (ELM). Also an iterative Mutated Firefly Algorithm with Global Optima concept (MFAGO) optimized RVFL network is used for comparison to prove the advantages of non-iterative models over the iterative ones. The performance metrics of the proposed EMD-KRR and EMD-RVFL confirm the effectiveness and precision in producing an accurate forecast of both wind speed and wind power in comparison to all other prediction models using the wind power data from three real world wind farms. Further a fast reduced version of the EMD-KRR is presented in the paper to reduce the computational overhead substantially using randomly selected support vectors from the data set while resulting in a reasonably accurate forecast.

Details

ISSN :
15684946
Volume :
70
Database :
OpenAIRE
Journal :
Applied Soft Computing
Accession number :
edsair.doi...........996e2049ada8b9c6a16b508e4e172d8c
Full Text :
https://doi.org/10.1016/j.asoc.2017.12.010