Back to Search Start Over

Giant optical absorption and ferroelectric polarization of BiCoO2S perovskite oxysulfide by first principles prediction

Authors :
Changliang Li
Li Guan
Jianxin Guo
Yinglong Wang
Lijing Wei
Baoting Liu
Source :
Physical Chemistry Chemical Physics. 22:11382-11391
Publication Year :
2020
Publisher :
Royal Society of Chemistry (RSC), 2020.

Abstract

Obtaining an ideal ferroelectric photovoltaic (FE-PV) material with a narrow bandgap and a large ferroelectric polarization value can enable us to achieve great practical FE-PV performance. By the introduction of sulfur into the tetragonal BiCoO3 perovskite with a C-type antiferromagnetic ordering, it is found that the bandgap of BiCoO2S decreases significantly (about 1.2 eV) while maintaining a large polarization value (about 1.86 C m−2) that is similar to the value of 1.793 C m−2 of BiCoO3. Most noteworthy is that the optical absorption of BiCoO2S is remarkably higher than those of BiCoO3 and other FE-PV materials. The decrease of the BiCoO2S bandgap originates from the movement of Co 3d states to a low-energy position due to the reduction of the Co ionicity when the less electronegative sulfur is introduced into BiCoO3 to substitute oxygen. The narrow bandgap and the high optical absorption of the BiCoO2S films grown on different substrates are favorable for FE-PV applications. In addition, the bandgap of BiCoO2S can be modulated by the doping amount of sulfur, which can help us fabricate multilayer FE-PV devices based on different bandgaps from different layers.

Details

ISSN :
14639084 and 14639076
Volume :
22
Database :
OpenAIRE
Journal :
Physical Chemistry Chemical Physics
Accession number :
edsair.doi...........99d301653d414fd2114067b91da63b6a
Full Text :
https://doi.org/10.1039/d0cp00057d