Back to Search Start Over

On shrinkage estimators in matrix variate elliptical models

Authors :
A. Tajadod
Mohammad Arashi
B. M. Golam Kibria
Source :
Metrika. 78:29-44
Publication Year :
2014
Publisher :
Springer Science and Business Media LLC, 2014.

Abstract

This paper derives the risk functions of a class of shrinkage estimators for the mean parameter matrix of a matrix variate elliptically contoured distribution. It is showed that the positive rule shrinkage estimator outperformed the shrinkage and unrestricted (maximum likelihood) estimators. To illustrate the findings of the paper, the relative risk functions for different degrees of freedoms are given for a multivariate t distribution. Shrinkage estimators for the matrix variate regression model under matrix normal, matrix t or Pearson VII error distributions would be special cases of this paper.

Details

ISSN :
1435926X and 00261335
Volume :
78
Database :
OpenAIRE
Journal :
Metrika
Accession number :
edsair.doi...........9a09c97e4d9713da2aa6a454e3fa4b31
Full Text :
https://doi.org/10.1007/s00184-014-0488-6