Back to Search
Start Over
Unconventional direct synthesis of Ni3N/Ni with N-vacancies for efficient and stable hydrogen evolution
- Source :
- Energy & Environmental Science. 15:185-195
- Publication Year :
- 2022
- Publisher :
- Royal Society of Chemistry (RSC), 2022.
-
Abstract
- Transition metal nitrides are a fascinating class of catalyst materials due to their superior catalytic activity, low electrical resistance, good corrosion resistance and earth abundance; however, their conventional synthesis relies on high-temperature nitridation processes in hazardous environments. Here, we report a direct synthesis of Ni3N/Ni enriched with N-vacancies using one-step magnetron sputtering. The surface state of Ni3N(001) with 75% N-vacancies is hydrogen-terminated and exhibits four inequivalent Ni3-hollow sites. This leads to stronger H* binding compared to Ni(111), and is affirmed as the most stable surface termination under the electrochemical working conditions (pH ≈ 13.8 and E = −0.1 V) from the Pourbaix diagram. The Ni3N/Ni catalyst shows low crystallinity and good wettability and exhibits a low overpotential of 89 mV vs. RHE at 10 mA cm−2 in 1.0 M KOH with excellent stability over 3 days. This performance closely matches that of the Pt catalyst synthesized under the same conditions and surpasses that of other reported earth-abundant catalysts on planar substrates. The application of Ni3N/Ni as a cocatalyst on Si photocathodes produces an excellent ABPE of 9.3% and over 50 h stability. Moreover, its feasibility for practical application was confirmed with excellent performance on porous substrates and robustness at high operating currents in zero-gap alkaline electrolysis cells. Our work demonstrates a general approach for the feasible synthesis of other transition metal nitride catalysts for electrochemical and photoelectrochemical energy conversion applications.
Details
- ISSN :
- 17545706 and 17545692
- Volume :
- 15
- Database :
- OpenAIRE
- Journal :
- Energy & Environmental Science
- Accession number :
- edsair.doi...........9b9344343ed074c491ffd733c32b7db8
- Full Text :
- https://doi.org/10.1039/d1ee02013g