Back to Search Start Over

Total dual integrality of the linear complementarity problem

Authors :
Naonori Kakimura
Kazuhisa Makino
Hanna Sumita
Source :
Annals of Operations Research. 274:531-553
Publication Year :
2018
Publisher :
Springer Science and Business Media LLC, 2018.

Abstract

In this paper, we introduce total dual integrality of the linear complementarity problem (LCP) by analogy with the linear programming problem. The main idea of defining the notion is to propose the LCP with orientation, a variant of the LCP whose feasible complementary cones are specified by an additional input vector. Then we naturally define the dual problem of the LCP with orientation and total dual integrality of the LCP. We show that if the LCP is totally dual integral, then all basic solutions are integral. If the input matrix is sufficient or rank-symmetric, and the LCP is totally dual integral, then our result implies that the LCP always has an integral solution whenever it has a solution. We also introduce a class of matrices such that any LCP instance having the matrix as a coefficient matrix is totally dual integral. We investigate relationships between matrix classes in the LCP literature such as principally unimodular matrices. Principally unimodular matrices are known that all basic solutions to the LCP are integral for any integral input vector. In addition, we show that it is coNP-hard to decide whether a given LCP instance is totally dual integral.

Details

ISSN :
15729338 and 02545330
Volume :
274
Database :
OpenAIRE
Journal :
Annals of Operations Research
Accession number :
edsair.doi...........9ba14f809b4332995b9db83b5ee112e3
Full Text :
https://doi.org/10.1007/s10479-018-2926-8