Back to Search Start Over

The Effect of Temperature on Disease Severity and Growth ofFusarium oxysporumf. sp.apiiRaces 2 and 4 in Celery

Authors :
Jaskirat Kaur
Sukhwinder Kaur
Radwan M. Barakat
Lynn Epstein
Source :
Phytopathology®. 112:364-372
Publication Year :
2022
Publisher :
Scientific Societies, 2022.

Abstract

Fusarium oxysporum f. sp. apii race 4, which is in F. oxysporum species complex (FOSC) Clade 2, causes a new Fusarium wilt of celery. We compared F. oxysporum f. sp. apii race 4 with race 2, which causes Fusarium yellows of celery and is in FOSC Clade 3. Optimal temperatures for celery yield are 16 to 18°C. Soil temperatures in California celery production areas can range up to 26°C, and the maximal rate of hyphal extension of F. oxysporum f. sp. apii races 2 and 4 in culture are 25 and 28°C, respectively. Here, we compared the effect of temperatures from 16 to 26°C on growth of F. oxysporum f. sp. apii races 4 and 2 in two celery cultivars: Challenger, which is resistant to F. oxysporum f. sp. apii race 2 and susceptible to race 4; and Sonora, which is susceptible to both F. oxysporum f. sp. apii races 2 and 4. Based on linear regressions, as temperature increases, there is an increase in the log of F. oxysporum f. sp. apii race 4 DNA concentration in celery crowns and in the reduction in plant height. Based on logistic regressions, as temperature increases, the incidence of vascular discoloration increases in celery with either F. oxysporum f. sp. apii race 2 or 4 infection. In both cultivars, temperatures of 22°C and above resulted in a significantly (α = 0.05) greater concentration of F. oxysporum f. sp. apii race 4 than race 2 in planta. The concentration of F. oxysporum f. sp. apii race 2 in crowns in ‘Challenger’ is temperature-independent and comparatively low; consequently, ‘Challenger’ is, at least partly, resistant rather than tolerant to F. oxysporum f. sp. apii race 2.

Details

ISSN :
19437684 and 0031949X
Volume :
112
Database :
OpenAIRE
Journal :
Phytopathology®
Accession number :
edsair.doi...........9d2a42b6cb37123bd0105539e6cf5bcd
Full Text :
https://doi.org/10.1094/phyto-11-20-0519-r