Back to Search
Start Over
Joint Message-Passing-Based Bidirectional Channel Estimation and Equalization With Superimposed Training for Underwater Acoustic Communications
- Source :
- IEEE Journal of Oceanic Engineering. 46:1463-1476
- Publication Year :
- 2021
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2021.
-
Abstract
- Acquiring accurate channel state information and mitigating severe intersymbol interference are challenging for underwater acoustic communications with moving transceivers due to the rapid changes of the underwater acoustic channels. In this work, we address the issue using a superimposed training (ST) scheme with a powerful channel estimation method. Different from the conventional time-multiplexed training, training sequences with a small power are superimposed with symbol sequences. The training signals are transmitted over all time, leading to enhanced tracking capability to deal with time-varying channels at the cost of only a small power loss. To realize this, based on the belief propagation, we develop a message-passing-based bidirectional channel estimation (BCE) algorithm, where all messages are Gaussian, enabling efficient implementation. In particular, the channel correlations are fully exploited through a forward recursion and a backward recursion, thereby achieving accurate channel estimation. Moreover, the ST-based BCE is combined with channel equalization (in the frequency domain) and decoding, and they are performed jointly in an iterative manner to significantly enhance the overall system performance. Field experiments were carried out in Jiaozhou Bay in 2019, and the results verify the effectiveness of the proposed scheme and algorithm.
- Subjects :
- Computer science
Mechanical Engineering
Recursion (computer science)
Ocean Engineering
Belief propagation
Intersymbol interference
Channel state information
Frequency domain
Electronic engineering
Electrical and Electronic Engineering
Underwater acoustics
Decoding methods
Computer Science::Information Theory
Communication channel
Subjects
Details
- ISSN :
- 23737786 and 03649059
- Volume :
- 46
- Database :
- OpenAIRE
- Journal :
- IEEE Journal of Oceanic Engineering
- Accession number :
- edsair.doi...........9dc46e6e29cd9c2ff170b9b89290fc02
- Full Text :
- https://doi.org/10.1109/joe.2021.3057916