Back to Search
Start Over
Automatic sleep apnea detection using fuzzy logic
- Source :
- 2015 IEEE Signal Processing in Medicine and Biology Symposium (SPMB).
- Publication Year :
- 2015
- Publisher :
- IEEE, 2015.
-
Abstract
- The obstructive sleep apnea (OSA) is one of the most important sleep disorders characterized by obstruction of the respiratory tract and cessation in respiratory flow level. Currently, apnea diagnosis is mainly based on the Polysomnography (PSG) testing during sleeping hours, however, recording the entire signals during nights is a very costly, time-consuming and difficult task. The goal of this study is to provide and validate an automatic algorithm to analyze four PSG-recordings and detect the occurrence of sleep apnea by noninvasive features. Four PSG signals were extracted from oxygen saturation (SaO2), Transitional air flow (Air Flow), abdominal movements during breathing (Abdomen mov.) and movements of the chest (Thoracic mov.). We describe a fuzzy algorithm to compensate the imprecise information about the range of signal loss, regarding the expert opinions. Signal classification is implemented minute-by-minute and for 30 labeled samples of MIT/BIH data sets (acquired from PhysioNet). The obtained data from 18 apnea subjects (11 males and 7 females, mean age 43 years) were categorized in three output signals of apnea, hypopnea and normal breathing. The proposed algorithm shows proficiency in diagnosing OSA with acceptable sensitivity and specificity, respectively 86% and 87%.
- Subjects :
- medicine.medical_specialty
medicine.diagnostic_test
business.industry
Speech recognition
Sleep apnea
Apnea
Polysomnography
medicine.disease
respiratory tract diseases
Obstructive sleep apnea
Internal medicine
medicine
Breathing
Cardiology
Sleep (system call)
medicine.symptom
business
Hypopnea
Electrocardiography
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- 2015 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)
- Accession number :
- edsair.doi...........9e72b0dab67b123efff288b2356b0585
- Full Text :
- https://doi.org/10.1109/spmb.2015.7405469