Back to Search Start Over

A novel adaptive bilinear filter based on pipelined architecture

Authors :
Jiashu Zhang
Haiquan Zhao
Source :
Digital Signal Processing. 20:23-38
Publication Year :
2010
Publisher :
Elsevier BV, 2010.

Abstract

To overcome the computational complexity of the Volterra filter, a novel adaptive joint process filter using pipelined bilinear polynomial architecture (JPBPF) is proposed in this paper. The proposed architecture consists of two subsections: nonlinear subsection performing a nonlinear mapping from the input space to an intermediate space by the bilinear polynomial filter (BPF), and a linear filter performing a linear mapping from the intermediate space to the output space. The corresponding adaptive algorithms are deduced for the nonlinear subsection and linear filter subsection, respectively. To evaluate the performance of the JPBPF, a series of simulations are presented including nonlinear system identification, predicting of speech signals and nonlinear channel equalization. Compared with the conventional second-order Volterra (SOV) filter and BPF, the JPBPF exhibits a slightly better convergence performance in terms of convergence speed and steady-state error. Moreover, since those modules of a JPBPF can be performed simultaneously in a pipelined parallelism fashion, this would lead to a significant improvement in its total computational efficiency.

Details

ISSN :
10512004
Volume :
20
Database :
OpenAIRE
Journal :
Digital Signal Processing
Accession number :
edsair.doi...........9eb6f3048ae81088c2ee5ede14ae1cec