Back to Search Start Over

Accelerating De Novo Drug Design against Novel Proteins Using Deep Learning

Authors :
Navneet Bung
Arijit Roy
Sowmya Ramaswamy Krishnan
Gopalakrishnan Bulusu
Source :
Journal of Chemical Information and Modeling. 61:621-630
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

In the world plagued by the emergence of new diseases, it is essential that we accelerate the drug design process to develop new therapeutics against them. In recent years, deep learning-based methods have shown some success in ligand-based drug design. Yet, these methods face the problem of data scarcity while designing drugs against a novel target. In this work, the potential of deep learning and molecular modeling approaches was leveraged to develop a drug design pipeline, which can be useful for cases where there is limited or no availability of target-specific ligand datasets. Inhibitors of the homologues of the target protein were screened at the active site of the target protein to create an initial target-specific dataset. Transfer learning was used to learn the features of the target-specific dataset. A deep predictive model was utilized to predict the docking scores of newly designed molecules. Both these models were combined using reinforcement learning to design new chemical entities with an optimized docking score. The pipeline was validated by designing inhibitors against the human JAK2 protein, where none of the existing JAK2 inhibitors were used for training. The ability of the method to reproduce existing molecules from the validation dataset and design molecules with better binding energy demonstrates the potential of the proposed approach.

Details

ISSN :
1549960X and 15499596
Volume :
61
Database :
OpenAIRE
Journal :
Journal of Chemical Information and Modeling
Accession number :
edsair.doi...........9ee6696d37cd10500d1b5ef1576fe239
Full Text :
https://doi.org/10.1021/acs.jcim.0c01060