Back to Search
Start Over
Former extent of glacier-like forms on Mars
- Source :
- Icarus. 274:37-49
- Publication Year :
- 2016
- Publisher :
- Elsevier BV, 2016.
-
Abstract
- Mars’ mid-latitude glacier-like forms (GLFs) have undergone substantial mass loss and recession since a hypothesised last martian glacial maximum (LMGM) stand. To date, there is a lack of knowledge of the nature and timing of the LMGM, the subsequent mass loss and whether this mass loss has been spatially variable. Here, we present the results of a population-scale inventory of recessional GLFs, derived from analysis of 1293 GLFs 3 identified within Context Camera (CTX) imagery, to assess the distribution and controls on GLF recession. A total of 436 GLFs were identified showing strong evidence of recession: 197 in the northern hemisphere and 239 in the southern hemisphere. Relative to their parent populations, recessional GLFs are over-represented in the low latitude belts between 25 and 40° and in areas of high relief, suggesting that these zones exert some control over GLF sensitivity and response to forcing. This analysis is complemented by the reconstruction of the maximum extent and morphology of a specific GLF for which High Resolution Imaging Science Experiment (HiRISE) derived digital elevation data are available. Using Nye's (Nye, J.F. [1951] Proc. Roy. Soc. Lond, Ser. a—Mat. Phys. Sci., 207, 554–572) perfect plastic approximation of ice flow applied to multiple flow-lines under an optimum yield strength of 22 kPa, we calculate that the reconstructed GLF has lost an area of 6.86 km 2 with a corresponding volume loss of 0.31 km 3 since the LMGM. Assuming the loss reconstructed at this GLF occurred at all mid-latitude GLFs yields a total planetary ice loss from Mars’ GLFs of 135 km 3 , similar to the current ice volume in the European Alps on Earth.
- Subjects :
- Martian
geography
geography.geographical_feature_category
010504 meteorology & atmospheric sciences
Meteorology
Ice stream
Northern Hemisphere
Astronomy and Astrophysics
Glacier
Context (language use)
Last Glacial Maximum
Mars Exploration Program
01 natural sciences
Space and Planetary Science
0103 physical sciences
Physical geography
010303 astronomy & astrophysics
Southern Hemisphere
Geology
0105 earth and related environmental sciences
Subjects
Details
- ISSN :
- 00191035
- Volume :
- 274
- Database :
- OpenAIRE
- Journal :
- Icarus
- Accession number :
- edsair.doi...........a03e94c8b9a155ae72a485c4a1983f6d
- Full Text :
- https://doi.org/10.1016/j.icarus.2016.03.006