Back to Search Start Over

High-Performance Time-Series Quantitative Retrieval From Satellite Images on a GPU Cluster

Authors :
Christopher Windmill
Jia Liu
P Merritt
Yong Xue
Junqiang Song
Kaijun Ren
Source :
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 12:2810-2821
Publication Year :
2019
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2019.

Abstract

The quality and accuracy of remote sensing instruments continue to increase, allowing geoscientists to perform various quantitative retrieval applications to observe the geophysical variables of land, atmosphere, ocean, etc. The explosive growth of time-series remote sensing (RS) data over large-scales poses great challenges on managing, processing, and interpreting RS ‘‘Big Data.’’ To explore these time-series RS data efficiently, in this paper, we design and implement a high-performance framework to address the time-consuming time-series quantitative retrieval issue on a graphics processing unit cluster, taking the aerosol optical depth (AOD) retrieval from satellite images as a study case. The presented framework exploits the multilevel parallelism for time-series quantitative RS retrieval to promote efficiency. At the coarse-grained level of parallelism, the AOD time-series retrieval is represented as multidirected acyclic graph workflows and scheduled based on a list-based heuristic algorithm, heterogeneous earliest finish time, taking the idle slot and priorities of retrieval jobs into account. At the fine-grained level, the parallel strategies for the major remote sensing image processing algorithms divided into three categories, i.e., the point or pixel-based operations, the local operations, and the global or irregular operations have been summarized. The parallel framework was implemented with message passing interface and compute unified device architecture, and experimental results with the AOD retrieval case verify the effectiveness of the presented framework.

Details

ISSN :
21511535 and 19391404
Volume :
12
Database :
OpenAIRE
Journal :
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Accession number :
edsair.doi...........a07ababb3f3398a04136fdb8712f2397
Full Text :
https://doi.org/10.1109/jstars.2019.2920077