Back to Search Start Over

Formation and characterization of Ge 1−x−y Si x Sn y /Ge 1−x Sn x /Ge 1−x−y Si x Sn y double heterostructures with strain-controlled Ge 1−x−y Si x Sn y layers

Authors :
Masahiro Fukuda
Osamu Nakatsuka
Masashi Kurosawa
Takashi Yamaha
Takanori Asano
Shigeaki Zaima
Yosuke Shimura
Syunsuke Fujinami
Source :
Materials Science in Semiconductor Processing. 70:156-161
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

The formation of Ge 1− x − y Si x Sn y /Ge 1− x Sn x /Ge 1− x − y Si x Sn y double heterostructures with strain-controlled Ge 1− x − y Si x Sn y layers and their crystalline properties were investigated. We achieved the epitaxial growth of double heterostructures consisting of a Ge 1− x Sn x layer with a Sn content of 9% sandwiched between compressive- or tensile-strained Ge 1− x − y Si x Sn y layers. The strain sign of the Ge 1− x − y Si x Sn y epitaxial layer influenced the crystallinity of the double heterostructures. Compressive-strained Ge 1− x − y Si x Sn y layers provided double heterostructures with higher crystallinity than the tensile-strained ones. The magnitude of strain in the Ge 1− x − y Si x Sn y layers also affected the surface roughness of the double heterostructures. Low surface roughness was achieved by decreasing the magnitude of strain in the Ge 1− x − y Si x Sn y layers. Moreover, the strain sign and/or Si content in Ge 1− x − y Si x Sn y influenced the thermal stability of the double heterostructures. Compressive-strained Ge 1− x − y Si x Sn y and/or a low Si content in Ge 1− x − y Si x Sn y improved the thermal stability of the double heterostructures to withstand annealing temperatures as high as 400 °C.

Details

ISSN :
13698001
Volume :
70
Database :
OpenAIRE
Journal :
Materials Science in Semiconductor Processing
Accession number :
edsair.doi...........a0d0ada312b129059a9fca2d43cd1f56
Full Text :
https://doi.org/10.1016/j.mssp.2016.10.024