Back to Search Start Over

Contribution from Ising domains overlapping out-of-plane to perpendicular magnetic anisotropy in Mn4N thin films on MgO(001)

Authors :
Fengyuan Yang
David C. Ingram
Joseph Corbett
Andrew Foley
Alam Khan
Arthur R. Smith
A. L. Richard
James C. Gallagher
Lianshui Zhao
Source :
Journal of Magnetism and Magnetic Materials. 439:236-244
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

Single phase e -Mn4N thin and ultrathin films are grown on MgO(001) using molecular beam epitaxy. Reflection high-energy electron diffraction and out-of-plane X-ray diffraction measurements are taken for each sample in order to determine the in- and out-of-plane strain for each sample. Vibrating sample magnetometry and superconducting quantum interference device measurements, which are performed on the thin and ultrathin films respectively, are used to plot the magnetization of each sample versus both in- and out-of-plane H → -fields and to determine the magnitude of perpendicular magnetic anisotropy in these films. Three significant components of perpendicular magnetic anisotropy are observed in these films and are attributed to sample strain (1 component) and shape (2 components). Among these components, the most significant component 0.8 – 4.9 Merg cm 3 is identified as a second term of shape anisotropy, which possesses a negative linear relationship with sample thickness over the range from 9 nm to 310 nm. Atomic (magnetic) force microscopy measurements show the presence of a surface localized magnetic polarization (22–82 % ), which increases with decreasing thickness, when the net magnetizations of the films are zero. The second term of shape anisotropy as well as the surface localized polarization, which each depend on sample thickness, are each regarded as a consequence of Ising domains overlapping out-of-plane in these films.

Details

ISSN :
03048853
Volume :
439
Database :
OpenAIRE
Journal :
Journal of Magnetism and Magnetic Materials
Accession number :
edsair.doi...........a1badf6155fec12346230055a019aabb
Full Text :
https://doi.org/10.1016/j.jmmm.2017.03.079