Back to Search
Start Over
Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats
- Source :
- The Journal of Physiology. 567:113-120
- Publication Year :
- 2005
- Publisher :
- Wiley, 2005.
-
Abstract
- Reactive oxygen or nitrogen species (RONS) are produced during exercise due, at least in part, to the activation of xanthine oxidase. When exercise is exhaustive they cause tissue damage; however, they may also act as signals inducing specific cellular adaptations to exercise. We have tested this hypothesis by studying the effects of allopurinol-induced inhibition of RONS production on cell signalling pathways in rats submitted to exhaustive exercise. Exercise caused an activation of mitogen-activated protein kinases (MAPKs: p38, ERK 1 and ERK 2), which in turn activated nuclear factor κB (NF-κB) in rat gastrocnemius muscle. This up-regulated the expression of important enzymes associated with cell defence (superoxide dismutase) and adaptation to exercise (eNOS and iNOS). All these changes were abolished when RONS production was prevented by allopurinol. Thus we report, for the first time, evidence that decreasing RONS formation prevents activation of important signalling pathways, predominantly the MAPK–NF-κB pathway; consequently the practice of taking antioxidants before exercise may have to be re-evaluated.
- Subjects :
- MAPK/ERK pathway
medicine.medical_specialty
Physiology
Kinase
p38 mitogen-activated protein kinases
Allopurinol
Biology
medicine.disease_cause
biology.organism_classification
Cell biology
Superoxide dismutase
chemistry.chemical_compound
Endocrinology
chemistry
Enos
Internal medicine
medicine
biology.protein
Xanthine oxidase
Oxidative stress
medicine.drug
Subjects
Details
- ISSN :
- 00223751
- Volume :
- 567
- Database :
- OpenAIRE
- Journal :
- The Journal of Physiology
- Accession number :
- edsair.doi...........a3bf4c852eed6a25cf0c2079bfcf3b20
- Full Text :
- https://doi.org/10.1113/jphysiol.2004.080564